Impaired respiratory function in MELAS-induced pluripotent stem cells with high heteroplasmy levels
نویسندگان
چکیده
Mitochondrial diseases are heterogeneous disorders, caused by mitochondrial dysfunction. Mitochondria are not regulated solely by nuclear genomic DNA but by mitochondrial DNA. It is difficult to develop effective therapies for mitochondrial disease because of the lack of mitochondrial disease models. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the major mitochondrial diseases. The aim of this study was to generate MELAS-specific induced pluripotent stem cells (iPSCs) and to demonstrate that MELAS-iPSCs can be models for mitochondrial disease. We successfully established iPSCs from the primary MELAS-fibroblasts carrying 77.7% of m.3243A>G heteroplasmy. MELAS-iPSC lines ranged from 3.6% to 99.4% of m.3243A>G heteroplasmy levels. The enzymatic activities of mitochondrial respiratory complexes indicated that MELAS-iPSC-derived fibroblasts with high heteroplasmy levels showed a deficiency of complex I activity but MELAS-iPSC-derived fibroblasts with low heteroplasmy levels showed normal complex I activity. Our data indicate that MELAS-iPSCs can be models for MELAS but we should carefully select MELAS-iPSCs with appropriate heteroplasmy levels and respiratory functions for mitochondrial disease modeling.
منابع مشابه
Molecular pathomechanisms and cell-type-specific disease phenotypes of MELAS caused by mutant mitochondrial tRNATrp
INTRODUCTION Numerous pathogenic mutations responsible for mitochondrial diseases have been identified in mitochondrial DNA (mtDNA)-encoded tRNA genes. In most cases, however, the detailed molecular pathomechanisms and cellular pathophysiology of these mtDNA mutations -how such genetic defects determine the variation and the severity of clinical symptoms in affected individuals- remain unclear....
متن کاملارزیابی روشهای تولید سلولهای بنیادی پرتوان ـ مروری کوتاه
Background and Objectives: Nowadays, cell therapy is one of the most important and promising strategies in the treatment of diseases. Unique capabilities of stem cells caused them to be used in both research and treatment as a valuable resource in basic science and medical researches. The use of stem cells has been limited due to the related ethical problems. One of the major concerns of sci...
متن کاملTissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model.
Mitochondrial DNA (mtDNA) mutations manifest with vast clinical heterogeneity. The molecular basis of this variability is mostly unknown because the lack of model systems has hampered mechanistic studies. We generated induced pluripotent stem cells from patients carrying the most common human disease mutation in mtDNA, m.3243A>G, underlying mitochondrial encephalomyopathy, lactic acidosis, and ...
متن کاملMitochondrial respiratory dysfunction caused by a heteroplasmic mitochondrial DNA mutation blocks cellular reprogramming.
Mitochondrial dysfunction caused by pathogenic mutations in mitochondrial tRNA genes emerges only when mutant mitochondrial DNA (mtDNA) proportions exceed intrinsic pathogenic thresholds; however, little is known about the actual proportions of mutant mtDNA that can affect particular cellular lineage-determining processes. Here, we mainly focused on the effects of mitochondrial respiratory dysf...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کامل